

EXTRACTION OF POTASH FROM K-FELDSPAR MINERAL BY ACID AND MOLTEN SALT LEACHING PROCESSES

M. KUMANAN, G. SATHYA, V. NANDAKUMAR & L. JOHN BERCHMANS

Electropyrometallurgy Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India

ABSTRACT

Potassium is one of the three essential nutrients for the plant growth. It will be supplied in the form of fertilizer with other nutrients such as N, P and K. Feldspars and glauconite minerals are the prominent sources of potash, which contains a good amount of potassium with other associated elements. Feldspar exists in different phases such as microcline, albite and anorthosilicate. The feldspar has an average chemical composition of 62% SiO₂, 26% Al₂O₃, 8% K₂O, 3% Na₂O and 1% CaO as the main constituents. In order to extract potassium, chemical leachants such as HCl, H₂SO₄ and HNO₃ were tried with different concentrations. The recovery of potash is found to be 35% in the case of H₂SO₄ medium. In hydrothermal process, maximum recovery of potash is attained as 71% in H₂SO₄ medium by repeated cycles of leaching. Molten salt extraction was performed at 850°C using MgCl₂ and CaCl₂ as molten leaching media. The duration of digestion was about 8 hours. After the digestion in the molten melt, the K and Na were leached out by treating with water and acid independently. The product was isolated from the molten melt and analyzed for its concentration using Atomic Absorption Spectroscopy (AAS), X-ray Diffraction technique (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). In the water medium, more than 90% of potash can be recovered as water soluble K using CaCl₂ as the flux. In the case of acid medium, same concentration of potash can be extracted along with the dissolution of Ca as CaCl₂ While in the case of MgCl₂ as the flux, it is noticed that only 35% of K can be recovered. The results indicate that maximum recovery of potash is achieved when the feldspar to flux ratio (Feldspar: CaCl₂) is 1:8 to1:10. The results of the above investigation have been presented in this paper.

KEYWORDS: Feldspar, Potash Leaching, X- Ray Diffraction, Hydrometallurgical Route, Molten Salt